Utilizing low temperature differences from solar vacuum tube collectors or waste heat in the range 70–200 °C seems to be the most promising and commercial interesting field of applications for thermoacoustic systems. Recently a novel 4-stage “self matching” traveling wave engine is developed and tested. Beside the low acoustic loss and compactness, due to traveling wave feedback, all components per stage are identical which is beneficial from (mass) production point of view. Based on this concept a 100 kWT thermoacoustic power (TAP) generator is under construction. This project is carried out in the framework of phase two of the Dutch SBIR program. The 100 kWT TAP will be installed at a paper manufacturing plant in the Netherlands for converting part of the flue gas at 150°C from the paper drying process into electricity. Emphasis in this project is on production and cost aspects lowering the investment per kWe to a level competitive to ORC’s. After successful completion of this pilot, commercialization and delivery of 100kW to 1 MW thermoacoustic power generators for industrial waste heat recovery and as add-on for CHP systems is planned to begin in 2012. The same concept of the 4-stage traveling wave engine is also implemented in an atmospheric pressure operated thermoacoustic cooking device for developing countries which generate beside hot water up to 50 W electricity. Details, ongoing work and experimental results of these projects will be presented.

This content is only available via PDF.
You do not currently have access to this content.