Cavitation of a hydrofoil is observed in detail by using a high speed video camera. A paint removal test is also carried out in order to evaluate cavitation aggressiveness for erosion. 2D hydrofoil profile is Clark Y 11.7% and its angle of attack is seven degrees. Cavitation number is σ = 1.08. The experimental results are compared with cavitation CFD. Numerous features of unsteady cavitation are observed such as cyclic fluctuation of the sheet cavity, existence of the glassy cones on a sheet cavity, generation of the cloud cavitation from the sheet cavity and the isolated bubbles traveling over the suction surface of the blade. The isolated traveling bubbles and their collapses are thought to be one of the main causes of the severe paint removals. The isolated traveling bubbles are derived from the flowing cavitation nucleus or from abrupt onset at the leading edge of the blade. For computing these complicated phenomena, combination of grid scale bubbles (GSB) and sub grid scale bubble model (SGSB) are proposed. GSB shall be computed by using the computational scheme for the free surface with phase change model. SGSB can be computed with conventional cavitation model. The breakup of GSB generates SGSB, and the coalescence of SGSB makes GSB. Upper limit of void fraction of SGSB is estimated in the range of five or ten percent from the simple speculation of the structure of packed spheres. The two types of cavitation bubble inception model are also discussed based on the generation of the isolated bubbles observed in the experiments. To verify the proposed concepts of cavitation model, a traveling air bubble over a hydrofoil is computed by using the free surface flow scheme of Volume of Fluid (VOF) approach. Cavitation on the hydrofoil is also computed by VOF approach with boiling model concerning the heat transfer. Both the computed results show qualitatively similar characteristics of the bubble dynamics to those in experimental results.

This content is only available via PDF.
You do not currently have access to this content.