Numerical simulations of a transient flow of helium injected into an established background flow of nitrogen were carried out to identify the dominant features of the transient mixing process between these two dissimilar gases. The geometry of interest is composed of two helium slots on either side of a central nitrogen channel feeding into a ‘two-dimensional’ mixing chamber. Simulations were accomplished on both two- and three-dimensional grids using an unsteady DES approach. Results are compared with experimental measurements of species distributions. Unsteady 2-D solutions give a reasonable qualitative picture of the transient mixing process in the middle of the chamber and enable cost-effective parametric analyses and grid refinement studies. The 2-D solutions also provide quantitative estimates of representative characteristic times to guide the 3-D calculations. The 3-D solutions give a reasonable approximation to span-wise events.

This content is only available via PDF.
You do not currently have access to this content.