The flow analysis around blades of a transonic fan is presented for both clean and radially distorted inlets. Computations are shown for four-blade passages that are accomplished with a second order accurate code using a k-ω turbulence model. The mass flow rate along a speed line is controlled by varying a choked nozzle downstream of the fan. The results show good agreement with data for three speed lines. In the near-stall region, the flow first becomes unsteady and then unstable with the unsteadiness increasing at lower speeds. The four-blade simulations remained stable to lower mass flow rates than the single-blade simulations. In the near-stall vicinity, tip vortex breakdown occurred creating a low momentum zone near the blade tip on the pressure side that grew as the mass flow was decreased until it eventually blocked the passage. The presence of distortion reduced the operational range and moved the stall line to higher mass flow rates. At high speeds distortion reduced both the mass flow rate and total pressure ratio while at lower speeds, the choking mass flow rate was reduced, but the total pressure ratio was slightly improved. The flow separation near the hub on the suction side was caused by the distortion. Its size was decreasing with rotational speed.

This content is only available via PDF.
You do not currently have access to this content.