A new method is put forward to model the flow in a highly loaded axial flow pump. A directional loss model is utilized to model the function of a valve behind the pump stator vanes. A periodic boundary condition between the inlet and the outlet of the pump is applied to model a closed loop. Thus no flow specification in either the inlet or outlet of the pump is required; also it is not necessary to give the turbulence level. By this method no pressure level inside the flow domain is given by a boundary condition. To avoid numerical instability the pressure level has to be given at least at one grid point. A given constant pressure somewhere in the loop domain is physically invalid, especially at stall condition of the pump. This is avoided by introducing a reservoir with a constant pressure boundary condition that is nearly decoupled from the pressure field inside the main pump loop by a huge flow resistance. Consequently this method can avoid specifying non-physical stationary boundary conditions at the inlet and the outlet for transient simulations. The new model can predict the mass flow fluctuations in the pump. These fluctuations are not very strong at stable operating conditions but increase in part load or stalled flow conditions. The transient numerical results obtained by the new approach are compared with those obtained by the conventional simulation with stationary boundary conditions (constant total pressure at the inlet and fixed mass flow at the outlet) and also with results of experimental investigations performed by Kosyna and Stark. The different flow structures inside the blade passages of the pump are described and compared in detail for part load, overload and design point as well as for stalled flow conditions.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
A Closed Loop Approach to Simulate the Unsteady Three-Dimensional Flow in an Axial Flow Pump Available to Purchase
Friedrich-Karl Benra,
Friedrich-Karl Benra
University of Duisburg-Essen, Duisburg, Germany
Search for other works by this author on:
Hans Josef Dohmen
Hans Josef Dohmen
University of Duisburg Essen, Duisburg, Germany
Search for other works by this author on:
Friedrich-Karl Benra
University of Duisburg-Essen, Duisburg, Germany
Hans Josef Dohmen
University of Duisburg Essen, Duisburg, Germany
Paper No:
FEDSM-ICNMM2010-30484, pp. 631-645; 15 pages
Published Online:
March 1, 2011
Citation
Benra, F, & Dohmen, HJ. "A Closed Loop Approach to Simulate the Unsteady Three-Dimensional Flow in an Axial Flow Pump." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 631-645. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30484
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
NPSHr Optimization of Axial-Flow Pumps
J. Fluids Eng (July,2008)
Investigation on the Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump
J. Fluids Eng (July,2020)
Related Chapters
Introduction
Design of Mechanical Bearings in Cardiac Assist Devices
Introduction
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Experimental Methods, Data, and Analysis
Mixed-flow Pumps: Modeling, Simulation, and Measurements