Three-phase gas-liquid-particle flows under microgravity condition were numerically studied. An Eulerian-Lagrangian computational model was used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that bubble shape variations were neglected and the bubbles remained spherical. The bubble-liquid, particle-liquid and bubble-particle interactions were accounted for in the analysis. The discrete phase equations included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied. The effects of gravity and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region and the bubble plume exhibits a plug type flow behavior. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. Compared to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. The simulation results showed that the effect of g-jitter acceleration on the gas-liquid-particle three phase flows is small.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
Numerical Simulations on Gas-Liquid-Particle Three-Phase Flows Under Microgravity
Goodarz Ahmadi
Goodarz Ahmadi
Clarkson University, Potsdam, NY
Search for other works by this author on:
Xinyu Zhang
Clarkson University, Potsdam, NY
Goodarz Ahmadi
Clarkson University, Potsdam, NY
Paper No:
FEDSM-ICNMM2010-30068, pp. 33-41; 9 pages
Published Online:
March 1, 2011
Citation
Zhang, X, & Ahmadi, G. "Numerical Simulations on Gas-Liquid-Particle Three-Phase Flows Under Microgravity." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 33-41. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30068
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Multi-Modal Forcing of the Turbulent Separated Shear Flow Past a Rib
J. Fluids Eng (January,2004)
Validation of a Two-Phase CFD Air/Mist Film Cooling Model With Experimental Details—Part II: Computational Model Validation
J. Thermal Sci. Eng. Appl (November,2022)
Related Chapters
Optimal Handoff Decision Method for Multi-Mode Terminals in Next Generation Wireless Networks
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
A Novel Method for Carrier Extraction in DBPSK Demodulation
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Material Behavior of Case Carburized Bearings Subjected to Standing Contact Loading Conditions
Bearing and Transmission Steels Technology