When collecting the energy of the sun for domestic use, there are several options, which include photovoltaic cells and evacuated tube collectors. Arrays of evacuated tube collectors are used to heat water for domestic applications, supplementing the use of a typical hot water heater, while photovoltaic cells transform the sun’s radiation into electricity. The benefit of the tube collectors is that they supplement an appliance that uses a fairly large amount of electricity when compared to others in an average home. However, the collectors cannot operate during the night time and produce more hot water than needed at their peak operation point. A thermal storage unit can be used to even out the conversion of energy throughout the day to solve this problem. This study proposes a system using paraffin wax to store thermal energy collected during the day by melting the wax. The system makes use of a finned heat exchanger, with paraffin wax on the shell side, and glycol on the tube side as the heat transfer fluid. It also includes a separate loop for water to flow through and receive thermal energy from the melted wax. Although the wax used in the study is quite effective at storing thermal energy, it has the problem of low conductivity. So, fins are added to the storage and extraction loops to increase the wax’s thermal conductivity. The fins not only help to melt the wax more quickly but also act as nucleation sites when the wax freezes. Once all the wax is melted, energy can be exchanged from it to heat water. When creating such a unit, it is useful to have simulation tools to guide its design. One such tool is FLUENT, which will be used in this study to create a simulation of part of the unit. The simulation will be compared to experimental data from a prototype unit and evaluated based upon its strengths and weaknesses.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
Evaluating CFD Modeling of a Thermal Storage Unit
Monica F. Bonadies,
Monica F. Bonadies
University of Central Florida, Orlando, FL
Search for other works by this author on:
Son H. Ho,
Son H. Ho
University of Central Florida, Orlando, FL
Search for other works by this author on:
J. S. Kapat
J. S. Kapat
University of Central Florida, Orlando, FL
Search for other works by this author on:
Monica F. Bonadies
University of Central Florida, Orlando, FL
Son H. Ho
University of Central Florida, Orlando, FL
J. S. Kapat
University of Central Florida, Orlando, FL
Paper No:
FEDSM-ICNMM2010-30692, pp. 269-278; 10 pages
Published Online:
March 1, 2011
Citation
Bonadies, MF, Ho, SH, & Kapat, JS. "Evaluating CFD Modeling of a Thermal Storage Unit." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 269-278. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30692
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Latent Heat Storage: Container Geometry, Enhancement Techniques, and Applications—A Review
J. Sol. Energy Eng (October,2019)
Experimental Analysis of Salt Hydrate Latent Heat Thermal Energy Storage System With Porous Aluminum Fabric and Salt Hydrate as Phase Change Material With Enhanced Stability and Supercooling
J. Energy Resour. Technol (April,2021)
Optimization of a Phase Change Thermal Storage Unit
J. Thermal Sci. Eng. Appl (March,2012)
Related Chapters
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Numerical Study on Dynamic Discharging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Numerical Study on Dynamic Charging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)