The present work reports a way of using Artificial Neural Networks for modeling and integrating the governing chemical kinetics differential equations of Jones’ reduced chemical mechanism for methane combustion. The chemical mechanism is applicable to both diffusion and premixed laminar flames. A feed-forward multi-layer neural network is incorporated as neural network architecture. In order to find sets of input-output data, for adapting the neural network’s synaptic weights in the training phase, a thermochemical analysis is embedded to find the chemical species mole fractions. An analysis of computational performance along with a comparison between the neural network approach and other conventional methods, used to represent the chemistry, are presented and the ability of neural networks for representing a non-linear chemical system is illustrated.

This content is only available via PDF.
You do not currently have access to this content.