In this study, Numerical analysis has been used to investigate entropy generation for array of pin-fin heat sink. Technique is applied to study the thermodynamic losses caused by heat transfer and pressure drop in pin-fin heat sinks. A general expression for the entropy generation rate is obtained by considering the whole heat sink as a control volume and applying the conservation equations for mass and energy with the entropy balance. Analytical and empirical correlations for heat transfer coefficients and friction factors are used in the numerical modeling. Also effects of heat transfer and pressure drop in entropy generation in control volume over pin-fins have been studied. Numerical analysis has been used for three different models of pin-fin heat sinks. The models are different in cross section area. These cross section areas are circle, horizontal ellipse and vertical ellipse which mentioned in next sections. Reference velocity used in Reynolds number and pressure drop is based on the minimum free area available for the fluid flow. Also for numerical analysis in-line arrangement of fins has been investigated and their relative performance is compared. At the end, the performance of these three models has been compared.

This content is only available via PDF.
You do not currently have access to this content.