Multiphase flows are generated in several industrial domains. The numerical simulation of such flows need to have an exact tracking of the different phase interfaces. The level set method is one of the simplest methods used to study the moving front of the flow. But it is known that this method generates a non mass conservation, and do not respect the uniformity of the signed distance function. Several corrections are usually proposed to solve these problems when using the Level set method. In this paper, a novel two steps correction method is proposed in order to guarantee the flow mass conservation and the exact shape of the flow front. The first step concerns the correction of the mass loss. It consists to add in the transport equation, a penalty or constraint term, built to force the velocity field to satisfy the mass balance or to preserve the conservative property. This term is multiplied to an adjustable penalty factor (β). The second step consists to impose that the isocontours of the level set function (φ) always respect the same distance. With this way, the costly reinitialization procedure is eliminated. The performance of the method is demonstrated and validated using several cases involving two-phase flow. The numerical experiments show that the accuracy and performances of our method is drastically improved compared to other methods. The approach will then applied to track an air-liquid interface in a case of an air bubble moving in a constant volume of liquid. In this case, the classical level set method reveals to be not conservative. A solution is then proposed in order to introduce a correction. To do, Navier-Stokes, continuity and energy equations are coupled to describe the flow and its thermal behavior. A finite element method is used to solve the equations. The solution is also verified by solving the dam-break problem, and bubble rising in water. Good agreements with referenced solutions are demonstrated for all tow investigated problems.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
Simulation of Two-Phase Flow Using Conservative Level-Set Method Without Re-Initialization Process
Rabie El Otmani,
Rabie El Otmani
Universite´ de Lyon, Villeurbanne, France
Search for other works by this author on:
M’hamed Boutaous,
M’hamed Boutaous
Universite´ de Lyon, Villeurbanne, France
Search for other works by this author on:
Hamda Benhadid
Hamda Benhadid
Universite´ de Lyon, Ecully, France
Search for other works by this author on:
Rabie El Otmani
Universite´ de Lyon, Villeurbanne, France
M’hamed Boutaous
Universite´ de Lyon, Villeurbanne, France
Hamda Benhadid
Universite´ de Lyon, Ecully, France
Paper No:
FEDSM-ICNMM2010-30211, pp. 1401-1410; 10 pages
Published Online:
March 1, 2011
Citation
El Otmani, R, Boutaous, M, & Benhadid, H. "Simulation of Two-Phase Flow Using Conservative Level-Set Method Without Re-Initialization Process." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1401-1410. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30211
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Local Liquid Velocity in Vertical Air-Water Downward Flow
J. Fluids Eng (July,2004)
Time-Derivative Preconditioning Methods for Multicomponent Flows—Part II: Two-Dimensional Applications
J. Appl. Mech (May,2009)
Eulerian–Eulerian Modeling of Convective Heat Transfer Enhancement in Upward Vertical Channel Flows by Gas Injection
J. Thermal Sci. Eng. Appl (April,2018)
Related Chapters
Three - Dimensional Numerical Simulation of Treatment on Dam Foundation with Weak Interlayer
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)
Hydro Power Generation: Global and US Perspective
Energy and Power Generation Handbook: Established and Emerging Technologies
Hydro Power: Global and North American Perspectives
Hydro, Wave and Tidal Energy Applications