The two-dimensional jet flow of a Newtonian fluid at moderate Reynolds Number emerging from a channel where the upper plate is moving is examined theoretically in this study. In this case, the equations of motion are reduced by expanding the flow field about the basic Couette flow. Inertia is assumed to be large enough, allowing asymptotic development in terms of the inverse Reynolds number. A boundary layer forms adjacent to the free surface, and a classical boundary-layer analysis is applied to find the flow in the free surface and the moving wall. The influence of this boundary layer is investigated with the aid of the method of matched asymptotic expansions. The flow and stress fields are obtained as composite expansions by matching the flow in the boundary-layer region near the free surface and the flow both in the inner (boundary-layer) region and in the outer region of the core. The influence of wall velocity on the shape of the free surface, the velocity and stress is emphasized. The formulation allows for the determination of the steady state flow and free surface profiles analytically. The present work provides the conditions near exit, with the help of Higher-order boundary-layer effects (i.e. the cubic term of the inverse Reynolds number), to determine the jet structure further downstream.

This content is only available via PDF.
You do not currently have access to this content.