The two-dimensional jet flow of a Newtonian fluid at moderate Reynolds Number emerging from a channel where the upper plate is moving is examined theoretically in this study. In this case, the equations of motion are reduced by expanding the flow field about the basic Couette flow. Inertia is assumed to be large enough, allowing asymptotic development in terms of the inverse Reynolds number. A boundary layer forms adjacent to the free surface, and a classical boundary-layer analysis is applied to find the flow in the free surface and the moving wall. The influence of this boundary layer is investigated with the aid of the method of matched asymptotic expansions. The flow and stress fields are obtained as composite expansions by matching the flow in the boundary-layer region near the free surface and the flow both in the inner (boundary-layer) region and in the outer region of the core. The influence of wall velocity on the shape of the free surface, the velocity and stress is emphasized. The formulation allows for the determination of the steady state flow and free surface profiles analytically. The present work provides the conditions near exit, with the help of Higher-order boundary-layer effects (i.e. the cubic term of the inverse Reynolds number), to determine the jet structure further downstream.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
Flow of Moving Wall Jet Near Channel Exit at Moderate Reynolds Number
Rizwana Amin,
Rizwana Amin
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Roger E. Khayat
Roger E. Khayat
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Rizwana Amin
The University of Western Ontario, London, ON, Canada
Roger E. Khayat
The University of Western Ontario, London, ON, Canada
Paper No:
FEDSM-ICNMM2010-30769, pp. 1287-1293; 7 pages
Published Online:
March 1, 2011
Citation
Amin, R, & Khayat, RE. "Flow of Moving Wall Jet Near Channel Exit at Moderate Reynolds Number." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1287-1293. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30769
Download citation file:
7
Views
Related Proceedings Papers
Flow of a Thin Viscoelastic Jet
FEDSM2010
Related Articles
An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer
J. Heat Transfer (February,2007)
Similarity Solution of Laminar Axisymmetric Jets With Effect of
Viscous Dissipation
J. Heat Transfer (October,2006)
A Detailed Analysis of Film Cooling Physics: Part III— Streamwise Injection With Shaped Holes
J. Turbomach (January,2000)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition