This work investigates the effects of flow control on the near wake region of a disk in a water flow, utilizing the POD reconstructed time dependent velocity fields. Velocity measurements were collected using time resolved particle image velocimetry (TRPIV) at a Reynolds number of 20,000 based on the disk diameter, both with and without control. An open-loop control was applied via periodic synthetic jet excitation from the disk edge. With the advantage of a time resolved velocity database, we have the ability to reconstruct the time dependent velocity field in the wake of the disk. This reconstruction is done for the baseline and controlled cases using various POD truncations to observe velocity reconstructions, based on the overall energy of the system. In doing so, we will consider the convergence rate of the spatial eigenvalues when conducting our POD reconstruction of the fluctuating velocity field, for both the baseline and controlled cases. Since a complex flow exists in the wake of the disk, the goal will be to form a state space representation of the flow in the form of a linear time invariant (LTI) system. This model is simply a linearization of the flow around the baseline. Furthermore, our knowledge of the input control signal will allow us to predict the flow at a later instant in time. We would like to extract the most energetic modes of the system and thereby form our observer-based controller to close the loop. In order to accomplish this, and with a rich open-loop dataset at our disposal, we will first form the POD reconstruction of the baseline. We then form a new basis, obtained by taking the actuated (controlled) data and subtracting from it the components of the flow that fall in the subspace spanned by the baseline flow. This will characterize the flow field by capturing the effect of the control input (actuation), from which the parameters of the LTI system can be identified. Preliminary POD reconstruction shows that 60% of the energy is recovered from 20 POD modes of the total 511 modes for the baseline case; similarly 60% of the energy is also recovered from 100 POD modes of the total 1,024 modes for the actuated case.
Skip Nav Destination
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4948-4
PROCEEDINGS PAPER
Investigation of POD Bases for Flow Control on Disk Wakes
Zachary Berger,
Zachary Berger
Syracuse University, Syracuse, NY
Search for other works by this author on:
Rory Bigger,
Rory Bigger
Syracuse University, Syracuse, NY
Search for other works by this author on:
Makan Fardad,
Makan Fardad
Syracuse University, Syracuse, NY
Search for other works by this author on:
Hiroshi Higuchi,
Hiroshi Higuchi
Syracuse University, Syracuse, NY
Search for other works by this author on:
Mark N. Glauser,
Mark N. Glauser
Syracuse University, Syracuse, NY
Search for other works by this author on:
Aaron J. Orbaker
Aaron J. Orbaker
Syracuse University, Syracuse, NY
Search for other works by this author on:
Zachary Berger
Syracuse University, Syracuse, NY
Rory Bigger
Syracuse University, Syracuse, NY
Makan Fardad
Syracuse University, Syracuse, NY
Hiroshi Higuchi
Syracuse University, Syracuse, NY
Mark N. Glauser
Syracuse University, Syracuse, NY
Aaron J. Orbaker
Syracuse University, Syracuse, NY
Paper No:
FEDSM-ICNMM2010-31071, pp. 1109-1116; 8 pages
Published Online:
March 1, 2011
Citation
Berger, Z, Bigger, R, Fardad, M, Higuchi, H, Glauser, MN, & Orbaker, AJ. "Investigation of POD Bases for Flow Control on Disk Wakes." Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1109-1116. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-31071
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Characteristics of Shallow Turbulent Near Wakes at Low Reynolds Numbers
J. Fluids Eng (June,2000)
Model Based Control of Laminar Wake Using Fluidic Actuation
J. Comput. Nonlinear Dynam (October,2010)
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
J. Turbomach (January,2002)
Related Chapters
Power Flow Control Comparison between Unified Power Flow Controller and Static Synchronous Series Compensator
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Cooling a Radar’s Electronic Board
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment