In this paper we present results of an experimental investigation that explores the transient filling of nanochannels due to capillarity. The nanochannels explored here were fabricated using sacrificial metal cores and were designed to mimic the parallel-plate channel geometry. Channels of heights ranging from 41 to 91 nm were utilized in the experimental program and both aluminum and chromium were utilized as the sacrificial metal from which the channels were formed. The filling dynamics of channels that were closed on one end were also explored. The data reveal that the channels fabricated with aluminum as the sacrificial core yield marked departure from expected behavior, with the apparent frictional constant significantly elevated above classical values. Potential reasons for the departure are discussed. Channels fabricated with chromium cores result in behavior that yields much less deviation from anticipated Stokes flow behavior. However, for these channels the meniscus speed is observed to vary markedly across the channels transverse width. Channels that are closed on one end yield behavior that is significantly different from the open-ended channel results. Here the meniscus becomes destabilized as it approaches the capped channel end and the trapped air becomes entrained by the liquid and dispersed without evidence of bubble existence.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4373-4
PROCEEDINGS PAPER
Transient Filling of Sacrificially Etched Nanochannels by Capillarity
M. Hamblin,
M. Hamblin
Brigham Young University, Provo, UT
Search for other works by this author on:
A. Hawkins
A. Hawkins
Brigham Young University, Provo, UT
Search for other works by this author on:
M. Hamblin
Brigham Young University, Provo, UT
D. Murray
Brigham Young University, Provo, UT
D. Maynes
Brigham Young University, Provo, UT
A. Hawkins
Brigham Young University, Provo, UT
Paper No:
FEDSM2009-78548, pp. 555-560; 6 pages
Published Online:
July 26, 2010
Citation
Hamblin, M, Murray, D, Maynes, D, & Hawkins, A. "Transient Filling of Sacrificially Etched Nanochannels by Capillarity." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 2: Fora. Vail, Colorado, USA. August 2–6, 2009. pp. 555-560. ASME. https://doi.org/10.1115/FEDSM2009-78548
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Analytical Solution of a Creeping Flow Impinging on a Spherical Cap-Shaped Bubble on a Flat Solid Surface
J. Appl. Mech (May,2006)
Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture
J. Fluids Eng (March,2003)
Related Chapters
Nonferrous Material
Metric Standards for Worldwide Manufacturing, 2007 Edition
Non-spherical Dynamics of Gas Bubbles in Soft Matter
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Numerical Investigation of the Dynamics of Pressure Loading on a Solid Boundary from a Collapsing Cavitation Bubble
Proceedings of the 10th International Symposium on Cavitation (CAV2018)