Understanding the fluid dynamics of a particle in suspension is important for a complete investigation of many hydrodynamic phenomena, including microfluidic models. Dielectrophoresis (DEP) is a technique that can translate and trap particles through induced polarization when in the presence of non-uniform electric fields. Here, DEP has been used to capture and suspend a single 10.1 μm diameter spherical particle in a microfluidic channel. Procedures and results for controlled, oscillatory dielectrophoretic agitation of the suspended particle are shown. Hydrodynamic investigations are discussed including the incorporation of micron-resolution particle image velocimetry (μPIV).

This content is only available via PDF.
You do not currently have access to this content.