Cavitation is a phenomenon which occurs where the local pressure falls off under the vapor pressure. Over the past few years, numerical simulation models for cavitation have been developed significantly in order to investigate the mechanism of cavitation. In the paper, A local homogeneous cavitation model based on the theory of evaporation and condensation has been deduced, which is used to describe the phase change between water and vapor. The RNG k–ε turbulence model is used to simulate the turbulent flow and the finite volume method is employed to discrete the governing equations. The effects of surface tension of water, pressure fluctuations and non-condensable gases are included in the mass transfer cavitation model. Also in order to neglect the effects of the quantities such as the bubble number and bubble diameter, which is difficult to measure, the relations between the aerodynamic drag and surface tension forces is used to describe the bubble diameter. In order to evaluate the new cavitation model, the two phase cavitation flows around a NACA0015 hydrofoil at different attack angle and different cavitation number are simulated by the new cavitation model, and compared with references, which showed good agreement with the experiments.

This content is only available via PDF.
You do not currently have access to this content.