A study was done on the numerical and experimental analyses for the aerodynamic design of high performance of the counter rotating axial fan (CRF). Front rotor and rear rotor blades of a counter rotating axial fan are designed using the simplified meridional flow analysis method with the radial equilibrium equation and the free vortex design condition, according to design requirements. The through-flow fields and the aerodynamic characteristics of the designed rotor blades are analyzed by the matrix method and the frequency domain panel method. Fan performance curves are measured by following the standard fan testing method, KS B 6311. Three-dimensional flow fields in the CRF are analyzed by using the prism type five-hole probe. Performance characteristics of a counter-rotating axial flow fan are estimated for the variation of design parameters such as the hub to tip ratio, the taper ratio and the solidity. The effect of the hub to tip ratio on the fan efficiency is significant compared with the effects of other design parameters such as the solidity and the taper ratio. The fan efficiency is peak at the hub to tip ratio of 0.4, which is almost same point for the front rotor efficiency and rear rotor efficiency. The magnitudes of the meridional and relative velocities on the front and rear rotors are increased with the radial direction from hub to tip. This results in the reverse pressure gradient at the blade leading edges of both the front rotor and the rear rotor. Axial velocities of the CRF, which are measured by the prism type five-hole probe, are gradually increased at the mean radius due to the flow contraction effect. At the hub region, axial velocity is gradually decreased due to the flow separation and the hub vortex compare with design results. This result induces the increment of the incidence angle and the diffusion factor of the front rotor and the rear rotor.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4373-4
PROCEEDINGS PAPER
Numerical and Experimental Analyses for the Aerodynamic Design of High Performance Counter-Rotating Axial Flow Fans
Leesang Cho,
Leesang Cho
Hanyang University, Seoul, Republic of Korea
Search for other works by this author on:
Hyunmin Choi,
Hyunmin Choi
Hanyang University, Seoul, Republic of Korea
Search for other works by this author on:
Seawook Lee,
Seawook Lee
Hanyang University, Seoul, Republic of Korea
Search for other works by this author on:
Jinsoo Cho
Jinsoo Cho
Hanyang University, Seoul, Republic of Korea
Search for other works by this author on:
Leesang Cho
Hanyang University, Seoul, Republic of Korea
Hyunmin Choi
Hanyang University, Seoul, Republic of Korea
Seawook Lee
Hanyang University, Seoul, Republic of Korea
Jinsoo Cho
Hanyang University, Seoul, Republic of Korea
Paper No:
FEDSM2009-78507, pp. 231-244; 14 pages
Published Online:
July 26, 2010
Citation
Cho, L, Choi, H, Lee, S, & Cho, J. "Numerical and Experimental Analyses for the Aerodynamic Design of High Performance Counter-Rotating Axial Flow Fans." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 2: Fora. Vail, Colorado, USA. August 2–6, 2009. pp. 231-244. ASME. https://doi.org/10.1115/FEDSM2009-78507
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Experimental Analysis on Tip Leakage and Wake Flow in an Axial Flow Fan According to Flow Rates
J. Fluids Eng (March,2005)
Aerodynamic Performance of Blade Tip End-Plates Designed for Low-Noise Operation in Axial Flow Fans
J. Fluids Eng (August,2009)
Shaping of Tip End-Plate to Control Leakage Vortex Swirl in Axial Flow Fans
J. Turbomach (July,2010)
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Introduction
Axial-Flow Compressors