In this research, effective length of one-dimensional combustion in a dilute monopropellant spray, constant area and fixed volume chamber is analytically predicted. A new evaporation rate in the form of dk+1 relation is introduced. In the case of controlling vaporization by radiative heat transfer, k is equal to zero, and when molecular processes control the vaporization, k will be equal to one and in some cases vaporization data need the value of k greater than one to fit properly to related equation. Development of this approach can be used in the design of combustion chambers with optimum length and with using vaporization rate of R = R0〈r〉0k/〈r〉k. Spray equation and distribution function in one-dimensional coordinate in direction of chamber axis is used as the governing equation. Multiplying velocity and displacement variables by simplified spray equation and some manipulation lead to a final form of integral equation. Definition of β1β3 as criteria will simplify the complex integral equation to a solvable relation. Results provide dimensionless velocity of droplets (from initial state to completely vaporization) and chamber effective length for various values of k. The results obtained by employing dk+1 relation show that increasing k increases in droplet vaporization rate as well as oxidizer velocity and decreases in dimensionless effective length of chamber. Also they show that for β1β3 ≥ 25 deviation of dimensionless velocity from published data by Dehghani et al. (2009) is less than 3%.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4372-7
PROCEEDINGS PAPER
Analytical Solution of Chamber Effective Length in the Axial Engine Available to Purchase
S. R. Dehghani,
S. R. Dehghani
Sharif University of Technology, Tehran, Iran
Search for other works by this author on:
A. A. Mozafari,
A. A. Mozafari
Sharif University of Technology, Tehran, Iran
Search for other works by this author on:
M. H. Saidi,
M. H. Saidi
Sharif University of Technology, Tehran, Iran
Search for other works by this author on:
A. Ghafourian
A. Ghafourian
Sharif University of Technology, Tehran, Iran
Search for other works by this author on:
S. R. Dehghani
Sharif University of Technology, Tehran, Iran
A. A. Mozafari
Sharif University of Technology, Tehran, Iran
M. H. Saidi
Sharif University of Technology, Tehran, Iran
A. Ghafourian
Sharif University of Technology, Tehran, Iran
Paper No:
FEDSM2009-78358, pp. 881-888; 8 pages
Published Online:
July 26, 2010
Citation
Dehghani, SR, Mozafari, AA, Saidi, MH, & Ghafourian, A. "Analytical Solution of Chamber Effective Length in the Axial Engine." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A, B and C. Vail, Colorado, USA. August 2–6, 2009. pp. 881-888. ASME. https://doi.org/10.1115/FEDSM2009-78358
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Spray and Flame Structure of a Generic Injector at Aeroengine Conditions
J. Eng. Gas Turbines Power (March,2012)
The Effect of Liquid-Fuel Preparation on Gas Turbine Emissions
J. Eng. Gas Turbines Power (March,2008)
A Semi-Analytical Model for Evaporating Fuel Droplets
J. Heat Transfer (February,2005)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
A New Boom Mechanism Design for Corn Sprayer
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)