In the design of slurry transport equipment, the effects of solid particle concentration on hydraulic performance and wear have to be considered. This study involves examining the acoustic properties of slurry flows such as velocity, backscatter and attenuation as a function of volume fraction of solid particles. Ultrasound A-mode imaging method is developed to obtain particle concentration in a flow of soda lime glass particles (diameter of 200 micron) and water slurry in a 1 diameter pipe. Based on the acoustic properties of the slurry a technique is developed to measure local solid particle concentrations. The technique is used to obtain concentration profiles in homogeneous (vertical flow) and non-homogeneous (horizontal flow) slurry flows with solid particle concentrations ranging from 1–10% by volume. The algorithm developed utilizes the power spectrum and attenuation measurements obtained from the homogeneous loop as calibration data in order to obtain concentration profiles in other (i.e. non-homogenous) flow regimes. A computational study using FLUENT was performed and a comparison is made with the experimental results. A reasonable agreement between the experimental and computational results is observed.

This content is only available via PDF.
You do not currently have access to this content.