A dissipation transport equation for the carrier phase of particle-laden turbulent flows was recently developed. This equation shows a new production of dissipation term due to the presence of particles that is related to the velocity difference between the particle and the surrounding fluid. In the development, it was assumed that each coefficient was the sum of the coefficient for single phase flow and a coefficient quantifying the contribution of the particulate phase. The coefficient for the new production term (due to the presence of particles) was found from homogeneous turbulence generation by particles and the coefficient for the dissipation of dissipation term was analyzed using DNS. A numerical model was developed and applied to particles falling in a channel of downward turbulent air flow. Boundary conditions were also developed to ensure that the production of turbulent kinetic energy due to mean velocity gradients and particle surfaces balanced with the turbulent dissipation near the wall. The turbulent kinetic energy is compared with experimental data. The results show attenuation of turbulent kinetic energy with increased particle loading; however the model does under predict the turbulent kinetic energy near the center of the channel. To understand the effect of this additional production of dissipation term (due to particles), the coefficients associated with the production of dissipation due to mean velocity gradients and particle surfaces are varied to assess the effects of the dispersed phase on the carrier phase turbulent kinetic energy across the channel. The results show that this additional term plays a significant role in predicting the turbulent kinetic energy and a reason for under predicting the turbulent kinetic energy near the center of the channel is discussed. It is concluded that the dissipation coefficients play a critical role in predicting the turbulent kinetic energy in particle-laden turbulent flows.

This content is only available via PDF.
You do not currently have access to this content.