The structure of particle-laden gas flows in a horizontal-to-vertical elbow is investigated numerically for analysing the required modelling depth. The numerical computations are performed with the fully coupled Euler-Lagrange approach considering all the relevant forces: drag, gravity-buoyancy and lift forces (slip-shear and slip-rotational). Moreover, interparticle and particle-rough wall collisions are taken into account by means of stochastic approaches. The effect of the different mechanisms, i.e. wall roughness, inter-particle collisions and mass loading, on the flow structure in the bend and the resulting pressure drop are investigated.

This content is only available via PDF.
You do not currently have access to this content.