Micro-Air-Vehicle (MAV) and micro-flight robot using insect and bird flight mechanisms has been attracting significant attention in recent years since the micro-electromechanical systems (MEMS) have been developed actively. Many researchers have attempted to develop MAV and micro-flight robot with various actuators and devices so far however their studies have not led to practical applications yet. One of the reasons is that flying mechanism of birds and insects has not been clarified sufficiently. In this study, we evaluate dynamic behaviors of a wing observed from the butterfly’s viewpoint in its flight. The authors conduct a flight observation experiment of Cynthia cardui performing a free flight and fixed flight and an image analysis and calculate flapping angles, lead-lag angle and feathering angles of the butterfly performing flapping flight to clarify the relation between them. Furthermore, we aim at developing the micro flight robot like the butterfly using these results. The butterfly realizes its flapping motions by changing not only flapping angles but also lead-lag angles in free and fixed flights. In a free flight, a butterfly performs flapping by greatly changing feathering angles in the wing span direction. The micro flapping robot has two wings and does not have the tail plane. The micro flapping robot flied stably for 12 minutes, which was the battery’s duration. The elastic deformations of a wing are one of the important parameters to realize stable flight performance.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4372-7
PROCEEDINGS PAPER
Dynamic Behaviors of Butterfly Wing and Their Application to Micro Flight Robot
Tadatsugu Imura,
Tadatsugu Imura
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Search for other works by this author on:
Masaki Fuchiwaki,
Masaki Fuchiwaki
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Search for other works by this author on:
Kazuhiro Tanaka
Kazuhiro Tanaka
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Search for other works by this author on:
Tadatsugu Imura
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Masaki Fuchiwaki
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Kazuhiro Tanaka
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
Paper No:
FEDSM2009-78513, pp. 1687-1694; 8 pages
Published Online:
July 26, 2010
Citation
Imura, T, Fuchiwaki, M, & Tanaka, K. "Dynamic Behaviors of Butterfly Wing and Their Application to Micro Flight Robot." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A, B and C. Vail, Colorado, USA. August 2–6, 2009. pp. 1687-1694. ASME. https://doi.org/10.1115/FEDSM2009-78513
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Discussion of “A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping Wing Vehicles” by E. F. Helbling and R. J. Wood (Helbling, E. F., and Wood, R. J., 2018, ASME Appl. Mech. Rev., 70(1), p. 010801)
Appl. Mech. Rev (January,2018)
A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping-Wing Vehicles
Appl. Mech. Rev (January,2018)
Aggressive Flight With Quadrotors for Perching on Inclined Surfaces
J. Mechanisms Robotics (October,2016)
Related Chapters
Application of Experiment Design Method in System Simulation of Flight Vehicle
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
FSF of Serial-kinematics Systems
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy