Vortex shedding from the base of two dimensional bluff bodies is accompanied by three dimensional wake instabilities. These instabilities manifest as streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities (λz) depends on several parameters, including profile geometry and Reynolds number. The present study aims to determine λz for a blunt trailing edge airfoil, which is comprised of an elliptical leading edge, followed by a rectangular section. Results of numerical simulations of flow around the airfoil at Re(d) = 500, 800, 1200, and 17,000, and flow visualization at Re(d) = 2200 indicate that λz has an average value of 2.2d. An active flow control mechanism based on the three dimensional wake instabilities is proposed, to attenuate the fluctuating aerodynamic forces of the airfoil. The mechanism is comprised of trailing edge injection ports distributed across the span, with a spacing equal to λz. Injection of a secondary flow leads to excitation of the three dimensional instabilities and disorganization of the von Ka´rma´n vortex street. Numerical simulations at Re(d) = 500 and 17,000 indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces significantly, and reduce mean drag using a relatively small injection mass flow rate.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4372-7
PROCEEDINGS PAPER
Active Flow Control for Reduction of Fluctuating Aerodynamic Forces of a Blunt Trailing Edge Airfoil
Arash Naghib Lahouti,
Arash Naghib Lahouti
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Horia Hangan
Horia Hangan
The University of Western Ontario, London, ON, Canada
Search for other works by this author on:
Arash Naghib Lahouti
The University of Western Ontario, London, ON, Canada
Horia Hangan
The University of Western Ontario, London, ON, Canada
Paper No:
FEDSM2009-78136, pp. 1557-1565; 9 pages
Published Online:
July 26, 2010
Citation
Naghib Lahouti, A, & Hangan, H. "Active Flow Control for Reduction of Fluctuating Aerodynamic Forces of a Blunt Trailing Edge Airfoil." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A, B and C. Vail, Colorado, USA. August 2–6, 2009. pp. 1557-1565. ASME. https://doi.org/10.1115/FEDSM2009-78136
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
J. Turbomach (March,2012)
Passive Flow Control on Low-Pressure Turbine Airfoils
J. Turbomach (October,2003)
Synchronous Vortex Shedding (Vortex Pumping) Downstream of a Flat Plate Array
J. Fluids Eng (March,2000)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Power Flow Control Comparison between Unified Power Flow Controller and Static Synchronous Series Compensator
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition