The paper reports on an experimental investigation of turbulent flow through model two-dimensional porous media. The porous media was bounded on one side by a solid plane wall and on the other side by a zone of clear fluid. The model porous media comprised of square arrays of circular acrylic rods that were inserted into precision holes drilled onto pairs of removable plates. The removable plates were then inserted into groves made in the side walls of the test channel. The rods fill about 59% of the channel height. Different combinations of rod diameter and center-to-center spacing were used to produce solid volume fractions that ranged from 0.11 to 0.44. The Reynolds number based on the bulk velocity of the approach flow and channel height was 16800. A high resolution particle image velocimetry (PIV) system was used to conduct detailed velocity measurements within the porous media and the adjacent clear fluid. The results demonstrate that permeability of the porous medium is more useful in correlating the flow characteristics than the porosity or solid volume fraction. Irrespective of rod diameter or spacing, a decrease in permeability of the porous medium produced a lower value of the dimensionless slip velocity. A decrease in permeability also produced higher resistance to the fluid flow through the porous medium. As a result, a larger fraction of the approach flow is channeled through the clear zone adjacent to a porous medium with lower permeability than those with relatively higher permeability. It was also observed that spatially averaged profiles of the mean velocities and turbulent quantities depend strongly on permeability.

This content is only available via PDF.
You do not currently have access to this content.