The effect of a DC electric field on the formation and the characteristics of a nitrogen bubble injected from an orifice were studied experimentally and theoretically. This study was the first to divide the bubble growth process into four stages (waiting, expansion, deformation and detachment) according to the variation of the bubble shape in order to analyze the bubble behavior in the electric field. During the waiting stage, the waiting interval decreases significantly as the electric field strength rises. In the expansion stage, the minor axis reaches a maximum that decreases with increasing the electric field strength. Within the deformation stage, the major axis achieves its maximum and so does the aspect ratio. As the electric field strength rises, both the maximums of the major axis and the aspect ratio increase. At the detachment stage, as the electric field strength is intensified, the major axis lengthens, the minor axis shortens and the aspect ratio lengthens. From the waiting stage to the detachment stage, the effect of the electric field on the major axis of the bubble is marginal, while with increasing the electric field strength, the minor axis decreases distinctly and thus the aspect ratio increases. To employ the four-stage model, the bubble growth process was analyzed in detail under the electric field. The electric stress exerted on the bubble surface was calculated. The results show that the electric stress compresses the bubble equator and elongates the poles of the bubble, causing the bubble to elongate along the electric field direction.

This content is only available via PDF.
You do not currently have access to this content.