A CFD study of a 3 Dimensional flow field around two bodies (Two Canopies of a Parachutes) as two bluff bodies in an incompressible fluid (Air) is modeled here. Formations of these two bodies are top-to-top (One on the top of the other) with respect to the center of each other. One canopy with a constant cross sectional area with a vent of air at its apex, and the other with a variable cross sectional area with no vent is studied here. Vertical distances of these two bodies are varied form zero to half, equal, double and triple radius of the body with a vent on it. The flow condition is considered to be 3-D, unsteady, turbulent, and incompressible. The vertical distances between the bluff bodies, cross sectional area, and also vent ratio of bluff bodies are varied here. The drag forces with static pressures around the two bodies are calculated. From the numerical results, it can be seen that, the drag coefficient is constant on the range of zero to twenty percent of the vent ratio and it decreases for higher vent ratios for when the upper parachute is smaller than the lower one, and it increases for when the upper parachute is larger than the lower one. Both Steady and Unsteady cases gave similar results especially when the distance between the canopies is increased.

This content is only available via PDF.
You do not currently have access to this content.