This paper presents a condensed phase computational fluid dynamics (CFD) based tool for modeling the processes of melting, flow and gasification of thermoplastic materials exposed to a high heat flux. Potential applications of the tool include investigating the behavior of polymer materials commonly used in personal computers and computer monitors if exposed to an intense heat flux, such as occurs during a fire. The finite-volume based model uses a three-dimensional body-fitted time dependent grid formulation to solve the unsteady Navier Stokes equations. A multi-grid method is used to accelerate convergence at each time step. Sub-models are included to describe the temperature dependent viscosity relationship and in-depth gasification and absorption of thermoplastic materials, free surface flows and surface tension. A series of test cases have been performed and the model results are compared to experimental data to investigate the impacts of different sub-models, boundary conditions, material properties and problem configurations on the accuracy, efficiency and applicability of the modeling tool.

This content is only available via PDF.
You do not currently have access to this content.