Predicting interactions between particles and a surrounding viscous fluid is the concern of many environmental and industrial applications. A Direct Numerical Simulation (DNS) of dilute isotropic turbulent particulate flow has been conducted in a periodic box, with 1283 grid points. The objective is to understand the modification of isotropic turbulence due to dispersed solid particles by analyzing the DNS results. Previous numerical simulations have been, for the most part, limited to the point-particle regime. On the opposite, in these simulations, the diameter of the particles is larger than the Kolmogorov length scale. In order to maintain a constant turbulent kinetic energy, a physical forcing scheme is implemented. Thereby, statistics on the characteristics of the particles are more reliable. Furthermore, interactions between particles are treated via a repulsing force, consequently, simulations are four-way coupling. Simulations are performed with a fictitious domain approach and with the penalty method. For solving the velocity-pressure coupling, an augmented Lagrangian optimization algorithm is used. Results present the influence of the particle phase on the turbulence spectrum. Moreover, the comparison with particle-free case is particularly interesting notably about the anisotropy of the flow caused by the presence of the particles.
Skip Nav Destination
ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
August 10–14, 2008
Jacksonville, Florida, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4840-1
PROCEEDINGS PAPER
Direct Numerical Simulation of the Motion of Particles Larger Than the Kolmogorov Scale in a Homogeneous Isotropic Turbulence
Jean-Luc Estivalezes,
Jean-Luc Estivalezes
ONERA/DMAE, Toulouse, France
Search for other works by this author on:
Stephane Vincent,
Stephane Vincent
Universite´ Bordeaux I, Pessac, France
Search for other works by this author on:
Olivier Simonin
Olivier Simonin
Institut de Me´canique des Fluides de Toulouse, Toulouse, France
Search for other works by this author on:
Cedric Corre
ONERA/DMAE, Toulouse, France
Jean-Luc Estivalezes
ONERA/DMAE, Toulouse, France
Stephane Vincent
Universite´ Bordeaux I, Pessac, France
Olivier Simonin
Institut de Me´canique des Fluides de Toulouse, Toulouse, France
Paper No:
FEDSM2008-55156, pp. 121-128; 8 pages
Published Online:
June 30, 2009
Citation
Corre, C, Estivalezes, J, Vincent, S, & Simonin, O. "Direct Numerical Simulation of the Motion of Particles Larger Than the Kolmogorov Scale in a Homogeneous Isotropic Turbulence." Proceedings of the ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Volume 1: Symposia, Parts A and B. Jacksonville, Florida, USA. August 10–14, 2008. pp. 121-128. ASME. https://doi.org/10.1115/FEDSM2008-55156
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow
J. Fluids Eng (April,2016)
Modeling Dilute Gas–Solid Flows Using a Polykinetic Moment Method Approach
J. Fluids Eng (April,2016)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment