This paper focuses on the structure of turbulence around the trailing edge of a rotor blade operating behind a row of Inlet Guide Vanes (IGVs) located upstream of the rotor. High resolution, two-dimensional Particle Image Velocimetry (PIV) measurements are conducted in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. We focus on a small region around the rotor blade trailing edge, extending from 0.04c upstream of the trailing edge to about 0.1c downstream of it, c being the blade chord length. We examine the phase dependent distribution of turbulent kinetic energy (TKE) and its in-plane components of production rate. Impingement of an IGV wake on the suction surface of a rotor blade, near the trailing edge region, reduces the thickness of the boundary layer within the region impinged by the wake. The resulting increase in phase averaged shear strain rate increases the production rate and causes a striking increase in peak turbulent kinetic energy in the near wake. Streamwise velocity gradients, i.e. compression, also contribute to turbulence production, especially when the boundary layer at trailing edge is relatively thick, i.e. when it is not impinged by the IGV wake.

This content is only available via PDF.
You do not currently have access to this content.