In highly loaded axial flow pumps considerable changes of the flow behavior were reported when altering the flow rate from design point operation to part load operation. The flow structure which is changing from stable operating conditions to stalled flow conditions has been investigated in detail by Kosyna and Stark with experimental methods. The present paper focuses on the application of numerical methods to simulate the flow behavior in the pump which has been investigated experimental. The obtained numerical results using a commercial solver for the unsteady Reynolds averaged Navier-Stokes equations (URANS) have been compared to the experimental results of Kosyna and Stark et al. The characteristic of the pump at different operating points is compared to the measurement. The change in the flow structure at part load conditions which gives a decrease of head is reproduced by the simulation results. The vortex structure induced by the tip leakage flow is a flow phenomenon which is well-known in external aerodynamics and in axial-flow compressors at flow conditions close to stall. The change of this vortex structure at different operating conditions is shown. Also the part load recirculation vortex dominating the rotor tip flow at deep stall conditions as well as the cross passage vortex is visualized from the numerical results. All addressed flow phenomena are shown in contrast to the findings of the experimental investigations. This comparison of the flow fields for appropriate operating points shows that the reported change in the flow structure can be detected by numerical simulation as well.

This content is only available via PDF.
You do not currently have access to this content.