In a centrifugal pump the interaction between the rotating impeller pressure field and the stationary diffuser pressure field yields pressure fluctuations as the result of a modulation process. These fluctuations may induce hydroacoustic pressure fluctuations in the exit chamber of the pump and could cause unacceptable vibrations. This paper presents a methodology for the prediction of hydroacoustic pressure fluctuations resulting from rotor-stator interaction in a multistage centrifugal pump. The method consists in the one-way coupling of incompressible CFD and hydroacoustic simulations. In a first step the rotorstator pressure fluctuations are calculated using a commercial 3D-RANS CFD-code (CFX 10) for different flow rates. The acoustic simulations are performed in two consecutive steps. Initially a free oscillation analysis using white noise pressure fluctuations is performed, which provides hydroacoustic eigen frequencies and mode shapes of the outlet casing. In a second step the spatially distributed pressure fluctuations from the CFD simulation are used to perform a forced oscillation analysis. This approach allows the prediction of possible standing waves in the hydraulic collection elements in the last stage of multistage pumps.

This content is only available via PDF.
You do not currently have access to this content.