The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopumps. However, the various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate conditions. The cavitation surge is a viciously unstable phenomenon occurring at partial flow rates, in which all blade cavities are periodically and synchronously elongated and shortened, leading the strong vibration in pump systems. Because the cavitation surge is strongly associated with the inlet back flow of inducer, it is desirable to know the detailed structure of back flow for the development of its effective suppression methods/devices. Then, in the present study, we carried out the numerical and experimental investigations of non-cavitating flows in a two bladed helical inducer with/without an inlet ring plate, which has been found to be effective for the suppression of cavitation surge. The basic characteristics of the inlet back flow structure are obtained and discussed in terms of the occurrence/suppression mechanisms of cavitation surge.

This content is only available via PDF.
You do not currently have access to this content.