The pressure fluctuation caused by swirling flow in draft tube is one of the main reasons of vibration in hydraulic turbine. It directly affects the steady operation of hydraulic turbine unit. The pressure fluctuation in draft tube of a large Francis turbine can’t be obtained accurately by similarity law from model test, and prototype test is difficult to carry out and costs too much. Therefore, it is necessary to predict pressure fluctuation in draft tube numerically and provide scientific reference for mitigating and suppressing pressure fluctuation. This paper describes a numerical study of unsteady flow in the draft tube of a large Francis turbine in a Hydropower Station of China by using the Reynolds averaged Navier–Stokes (RANS) approach with a Reynolds stress transport model (RSM), validating the numerical results against experimental data. The numerical results successfully represent the vortex rope. The pressure fluctuation patterns in different parts of the draft tube including the cone, elbow and diffuser are analyzed. The pressure fluctuation in the cone and elbow is relative steady, and it has an obvious dominant frequency which is approximately 0.28 and 0.3 times of the runner rotational frequency. These results show very good agreement with experiments. The largest pressure amplitude appears in the draft tube cone downstream side and the draft elbow inside. The pressure fluctuation in the diffuser is stochastic, and the amplitude is small. Additionally, the pressure distributions on the horizontal computational section of the draft tube are analyzed.

This content is only available via PDF.
You do not currently have access to this content.