The effect of the bubble-induced liquid velocity on the mass transfer performance in the bubble plume is analyzed quantitatively with numerical simulations. A two-way coupling Eulerian-Lagrangian approach is used in the modeling of the bubble plumes with mass transfer. The dissolution of oxygen in bubble plumes with the initial bubble diameters from 100μm to 1mm is simulated. The results show that when a single bubble generator is used with the gas flux rate equals 10−8 cubic meter per second, for the plume with 100μm bubbles inside a 0.1m height cubic tank the maximum of the bubble-induced liquid velocity is over 10 times larger than the bubble’s terminal velocity, and the averaged residence time of bubbles in the plume is around one-tenth of the rising period estimated with the terminal velocity of a single bubble. The result suggests that for bubble plumes in a shallow bulk of water, the benefits of using smaller bubbles for high mass transfer efficiency will be overestimated without considering the reduction of the residence time of bubbles because of the bubble-induced liquid velocity. The present simulation shows that the dissolution efficiency of oxygen for the bubble plume with 100μm bubbles in 0.1m tank is around 1/2 of the theoretical value estimated with a single bubble rising with negligible diameter shrink. Compared with a plume in a 0.1m tank, the shrink of bubble diameter and the scattering of bubbles from the center of plume during their rising in a 0.4m tank attenuate the reduction of the averaged residence time because of the acceleration process as shown in a 0.1m tank. The effect of bubble-induced liquid velocity on the mass transfer efficiency for plumes with initial bubble diameter smaller than 160μm does not present obviously in a 0.4m tank as it does in the shorter tank.
Skip Nav Destination
ASME/JSME 2007 5th Joint Fluids Engineering Conference
July 30–August 2, 2007
San Diego, California, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4289-4
PROCEEDINGS PAPER
A Study on the Induced Liquid Velocity in Plumes by Tiny Bubbles
Xiaobo Gong,
Xiaobo Gong
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Yoichiro Matsumoto
Yoichiro Matsumoto
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Xiaobo Gong
University of Tokyo, Tokyo, Japan
Shu Takagi
University of Tokyo, Tokyo, Japan
Yoichiro Matsumoto
University of Tokyo, Tokyo, Japan
Paper No:
FEDSM2007-37674, pp. 245-250; 6 pages
Published Online:
March 30, 2009
Citation
Gong, X, Takagi, S, & Matsumoto, Y. "A Study on the Induced Liquid Velocity in Plumes by Tiny Bubbles." Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 2: Fora, Parts A and B. San Diego, California, USA. July 30–August 2, 2007. pp. 245-250. ASME. https://doi.org/10.1115/FEDSM2007-37674
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Applicability Tests for the Phase Doppler Anemometer for Cavitation Nuclei Measurements
J. Fluids Eng (September,1992)
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
J. Heat Transfer (February,2010)
Diagnostic Measurements of Fuel Spray Dispersion
J. Fluids Eng (September,1982)
Related Chapters
Modeling Grain Boundary Scattering in Nanocomposites
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Model and Simulation of Low Elevation Ground-to-Air Fading Channel
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Scattering of Out-Plane Line Source Load by a Shallow-Embedded Circular Lining Structure and the Ground Motion
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)