Large eddy simulation has been carried out of turbulent flow and heat transfer around a circular cylinder in crossflow at three subcritical Reynolds numbers (Re = 3,900, 10,000, 18,900) where the flow and heat transfer characteristics change rapidly with the Reynolds number. The computations were carried out using a second-order-accurate finite-volume Navier-Stokes solver that permits use of arbitrary unstructured meshes. A fully implicit, non-iterative fractional-step method was employed to advance the solution in time. The subgrid-scale (SGS) turbulent stresses and heat fluxes were modeled using the dynamic Smagorinsky model. The LES predictions were found to be in good agreement with the experimental data of Hajime and Igarashi (2004). The salient features of turbulent heat transfer in subcritical regime such as the laminar thermal boundary layer and the rapid increase with Reynolds number both in the mean and the r.m.s. Nusselt number in the separated region are closely reproduced by the predictions. The numerical results confirmed that the heat transfer characteristics are closely correlated with the structural change in the underlying flow with the Reynolds number.

This content is only available via PDF.
You do not currently have access to this content.