A fuel cell is an energy conversion device that converts the chemical energy of fuel into electrical energy. Fuel cells operate continuously if they are provided with the reactant gases, not like batteries. Fuel cells can provide power in wide range. Fuel cells are environmentally friendly; the by-product of hydrogen/oxygen fuel cell is water and heat. This paper will show a numerical modeling for this spiral design of high pressurized Polymer Electrolyte Membrane fuel cell. Numerical modeling requires understanding the physical principles of fuel cells, fluid flow, heat transfer, mass transfer in porous media, electrochemical reactions, multiphase flow with phase change, transport of current and potential field in porous media and solid conducting regions, and water transport across the polymer membrane; and this will result in optimal design process. This paper will show fuel cell models that are used in this analysis. Such as; electrochemical model: predicts local current density, voltage distributions. Potential field model: predicts current and voltage in porous and solid conducting regions. Multiphase mixture model: predicts liquid water and gas flow in the porous diffusion layers. Thin film multiphase model: tracks liquid water flow in gas flow passages. The numerical results of the theoretical modeling are shown in this paper. This paper shows the contour plots of mole fraction of H2O, H2, and O2. Results in this research include the species concentration of H2O, H2, and O2. This research also shows the plot of mass concentration of H2O, H2 and O2.
Skip Nav Destination
ASME/JSME 2007 5th Joint Fluids Engineering Conference
July 30–August 2, 2007
San Diego, California, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4289-4
PROCEEDINGS PAPER
A Novel Design of Polymer Electrolyte Membrane Fuel Cell
Khaled Alhussan
Khaled Alhussan
King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
Search for other works by this author on:
Khaled Alhussan
King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
Paper No:
FEDSM2007-37458, pp. 1427-1431; 5 pages
Published Online:
March 30, 2009
Citation
Alhussan, K. "A Novel Design of Polymer Electrolyte Membrane Fuel Cell." Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 2: Fora, Parts A and B. San Diego, California, USA. July 30–August 2, 2007. pp. 1427-1431. ASME. https://doi.org/10.1115/FEDSM2007-37458
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Numerical Investigation Into the Effect of Structural Parameters of Parallel Flow Field With Cooling Channels on Fuel Cell Performance
J. Electrochem. En. Conv. Stor (February,2022)
Simplified Model to Predict Incipient Flooding/Dehydration in Proton Exchange Membrane Fuel Cells
J. Fuel Cell Sci. Technol (August,2007)
Transport Phenomena Analysis in Proton Exchange Membrane Fuel Cells
J. Heat Transfer (December,2005)
Related Chapters
Physiology of Human Power Generation
Design of Human Powered Vehicles
Energy Options and Terms: An Introduction
Energy Supply and Pipeline Transportation: Challenges & Opportunities
Industrially-Relevant Multiscale Modeling of Hydrogen Assisted Degradation
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions