Three-dimensional structure of separated and vortical flow field has been investigated by numerical analysis on a half-ducted propeller fan. Complicated flow phenomena in the fan were captured by the Reynolds-averaged Navier-Stokes flow simulation (RANS) and a vortex structure identification technique based on the critical point theory. The flow field around the fan rotor is dominated by the tip leakage vortex. The tip leakage vortex starts to be formed near the blade mid-chord and grows nearly in the tangential direction without vortex breakdown. In the rotor passage, the high vorticity flow around the tip leakage vortex core is impinging on the pressure surface of the adjacent blade. It is expected that the behavior of the tip leakage vortex plays a major role in characteristics of the fan noise.

This content is only available via PDF.
You do not currently have access to this content.