This study examines the generation of large scale vortices caused by flow separation from a flat wing at various angles of attack. Time-resolved particle image velocimetry is used to determine the evolution and convective characteristics of the large scale structures. A rectangular airfoil with aspect ratio of 0.5 is used and data are collected at a Reynolds number of 23,500, for angles of attack from 0° to 20°. Data consists of two dimensional velocity fields obtained at 500 Hz located at the airfoil centerline. The region of interest is near the separation point but fields of view extend over approximately one half of the chord length from the leading edge to document the downstream progression of the large scale vortical flow elements. The velocity data were processed to identify the vorticity field dynamics in terms of the Kelvin-Helmholtz instability occurring near the leading edge. The vortical structures are identified using vortex detection based on local circulation. The convective nature of the vortex elements are shown to consist of merging, stalling and convecting, with convective velocities on the order of 20% of the freestream velocity with an associated Stouhal number based on chord length and freestream velocity of approximately 1.0.
Skip Nav Destination
ASME/JSME 2007 5th Joint Fluids Engineering Conference
July 30–August 2, 2007
San Diego, California, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4288-6
PROCEEDINGS PAPER
Dynamic Characteristics of Flow Separation From a Low Reynolds Number Airfoil Available to Purchase
Daniel R. Morse,
Daniel R. Morse
Oregon State University, Corvallis, OR
Search for other works by this author on:
James A. Liburdy
James A. Liburdy
Oregon State University, Corvallis, OR
Search for other works by this author on:
Daniel R. Morse
Oregon State University, Corvallis, OR
James A. Liburdy
Oregon State University, Corvallis, OR
Paper No:
FEDSM2007-37083, pp. 941-950; 10 pages
Published Online:
March 30, 2009
Citation
Morse, DR, & Liburdy, JA. "Dynamic Characteristics of Flow Separation From a Low Reynolds Number Airfoil." Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007. pp. 941-950. ASME. https://doi.org/10.1115/FEDSM2007-37083
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Detached Eddy Simulation of Micro-Vortex Generators Mounted on NACA 4412 Airfoil
J. Fluids Eng (June,2025)
Investigation of Three-Dimensional Unsteady Flows in a Two-Stage Shrouded Axial Turbine Using Stereoscopic PIV—Kinematics of Shroud Cavity Flow
J. Turbomach (January,2008)
Aerodynamics and Vortex Flowfield of a Slender Delta Wing With Apex Flap and Tip Flap
J. Fluids Eng (May,2017)
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Electrohydrodynamic Effect on Separation on an Airfoil in Low Reynolds Air Flow
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Numerical Investigation of Reynolds Number Effect on Airfoil Aerodynamic Performances
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)