A computational study of sonic jet injection into a supersonic crossflow with and without combustion was performed. The gaseous injector was 3.226 mm in diameter and was injected 30 degrees to the horizontal. Simulated conditions involved sonic injection of hydrogen into a Mach 4 air cross-stream with a jet to freestream momentum flux ratio of 2.1. The numerical flow solver used was GASP v. 4.2. The inviscid fluxes were computed in three dimensions using third-order Roe Flux in the streamwise and lateral directions and third-order Van Leer flux in the vertical direction. The algorithms were chosen because of their robustness, shock resolution capabilities and efficiency. The Mentor Supersonic Transport (SST) turbulence model was used since the algorithm has good capability of solving both wall-bounded and free-shear flows. The reaction model used for hydrogen and air was a 9 species, 18 reactions model created by Drummond. The main results of this work can be summarized as: 1) modeling of combustion does not significantly alter the mixing behavior of the solution, 2) the size of the fuel plume is larger for the analysis which includes reacting flow, 3) the difference in size and shape of the plume between the reacting and non-reacting cases increases with downstream distance from injection.
Skip Nav Destination
ASME/JSME 2007 5th Joint Fluids Engineering Conference
July 30–August 2, 2007
San Diego, California, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4288-6
PROCEEDINGS PAPER
Assessment of Reacting and Non-Reacting Supersonic Mixing
Theresa L. Campioli,
Theresa L. Campioli
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Joseph A. Schetz
Joseph A. Schetz
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
Theresa L. Campioli
Virginia Polytechnic Institute and State University, Blacksburg, VA
Joseph A. Schetz
Virginia Polytechnic Institute and State University, Blacksburg, VA
Paper No:
FEDSM2007-37166, pp. 1835-1841; 7 pages
Published Online:
March 30, 2009
Citation
Campioli, TL, & Schetz, JA. "Assessment of Reacting and Non-Reacting Supersonic Mixing." Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007. pp. 1835-1841. ASME. https://doi.org/10.1115/FEDSM2007-37166
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach
J. Eng. Gas Turbines Power (March,2011)
A Large Eddy Simulation Study on Hydrogen Microjets in Hot Vitiated Crossflow
J. Eng. Gas Turbines Power (March,2025)
Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene, and Normal-Heptane Plumes in Turbulent Coflows of Hot Air
J. Eng. Gas Turbines Power (January,2008)
Related Chapters
Numerical Research of Combustion Efficiency of a LOX/GCH 4 Shear Coaxial Injector
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Introduction
Mechanical Blood Trauma in Circulatory-Assist Devices
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)