Large Eddy Simulation (LES) of high-Reynolds-number wall-bounded turbulent flows is prohibitively expensive if the energy-containing eddies in the near-wall region are resolved. This motivates the use of wall-layer models in which an approximate solution of the near wall dynamics is bridged to an LES of the outer flow. The main interest of the present work are wall-modeling strategies based on Detached Eddy Simulation (DES). In these approaches, the near-wall solution is closed using a Reynolds-averaged Navier Stokes model with a subgrid closure applied to the outer flow. As is well known, the original DES formulation applied directly as a wall model results in a shift in the velocity profile, corresponding to an under-estimation of the skin friction. A new formulation is proposed in this contribution in which the wall-parallel components of the modeled stress are reduced in order to lower the influence of the model and increase the resolved stress. The effectiveness of the new model is evaluated via comparison against DES predictions using the original and recently-proposed versions of the method. The effect of grid resolution and model parameters are also assessed using computations of turbulent channel flow at a Reynolds number based on friction velocity and channel halfwidth of 5000. The predictions show that the anisotropic form of the model stress yields an improved prediction of the mean velocity profile in better agreement with the logarithmic law and with larger resolved stress in the near-wall region.
Skip Nav Destination
ASME/JSME 2007 5th Joint Fluids Engineering Conference
July 30–August 2, 2007
San Diego, California, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4288-6
PROCEEDINGS PAPER
An Anisotropic Subgrid Model for Large Eddy Simulation of Wall Bounded Turbulent Flows
Sachin S. Badarayani,
Sachin S. Badarayani
Arizona State University, Tempe, AZ
Search for other works by this author on:
Kyle D. Squires
Kyle D. Squires
Arizona State University, Tempe, AZ
Search for other works by this author on:
Sachin S. Badarayani
Arizona State University, Tempe, AZ
Kyle D. Squires
Arizona State University, Tempe, AZ
Paper No:
FEDSM2007-37318, pp. 1359-1366; 8 pages
Published Online:
March 30, 2009
Citation
Badarayani, SS, & Squires, KD. "An Anisotropic Subgrid Model for Large Eddy Simulation of Wall Bounded Turbulent Flows." Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007. pp. 1359-1366. ASME. https://doi.org/10.1115/FEDSM2007-37318
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
LES of Wall-Bounded Flows Using a New Subgrid Scale Model Based on Energy Spectrum Dissipation
J. Appl. Mech (March,2008)
The Role of Forcing and Eddy Viscosity Variation on the Log-Layer Mismatch Observed in Wall-Modeled Large-Eddy Simulations
J. Fluids Eng (May,2019)
Numerical Study of the Turbulent Flow Inside an ORACLES Configuration
J. Appl. Mech (September,2012)
Related Chapters
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Large Eddy Simulations of a Confined Tip-Leakage Cavitating Flow with Special Emphasis on Vortex Dynamics
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)