A 3D numerical simulation, based on the Lattice Boltzmann Method is carried out on a rectangular body (initially proposed by Ahmed [1]) to analyze the influence of blowing devices on the near-wake flow of a generic blunt body model. First, the results obtained without control are compared with experimental data from the literature. An open loop flow control strategy is then applied by setting blowing slots around the periphery of the body base. The blowing velocity is set to 1.5 V0, V0 being the upstream velocity. The resulting aerodynamic drag reduction is then analyzed by studying velocity, vorticity and total pressure loss distributions in the near-wake flow. Typical results show that a 29% drag reduction is obtained at a blowing angle of θ = 45° with respect to the base surface. Blowing jets are analogous to separated longitudinal fluidic elements which permit to reduce the transversal wake section by inclining the streamlines in the near-wake flow. The momentum introduced into the flow leads to a reduction in the wake total pressure loss and an increase in the base static pressure distribution. Finally, a parametric analysis is conducted on the blowing velocities in order to optimize the efficiency of the chosen control strategy, i.e. to minimize the ratio between the energy used to generate the jets and the energy saved through aerodynamic drag reduction.
Skip Nav Destination
ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering
July 17–20, 2006
Miami, Florida, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4751-9
PROCEEDINGS PAPER
Analyze and Control of Near-Wake Flow on a Simplified Car Geometry
A. Kourta
A. Kourta
Fluid Mechanics Institute, Toulouse, France
Search for other works by this author on:
M. Roume´as
Renault, Guyancourt, France
P. Gillie´ron
Renault, Guyancourt, France
A. Kourta
Fluid Mechanics Institute, Toulouse, France
Paper No:
FEDSM2006-98480, pp. 731-736; 6 pages
Published Online:
September 5, 2008
Citation
Roume´as, M, Gillie´ron, P, & Kourta, A. "Analyze and Control of Near-Wake Flow on a Simplified Car Geometry." Proceedings of the ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. Volume 2: Fora. Miami, Florida, USA. July 17–20, 2006. pp. 731-736. ASME. https://doi.org/10.1115/FEDSM2006-98480
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Numerical Simulation of Drag Reduction in Microgrooved Substrates Using Lattice-Boltzmann Method
J. Fluids Eng (July,2019)
Unsteady Aerodynamic Flow Investigation Around a Simplified Square-Back Road Vehicle With Drag Reduction Devices
J. Fluids Eng (June,2012)
Drag Reduction of a Bluff Body by Grooves Laid Out by Design of Experiment
J. Fluids Eng (November,2013)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Engineering Using Lattice Boltzmann Method to Investigate the Flow and Entropy Generation Inside a T-Type Micromixer with a Porous Block
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Power Flow Control Comparison between Unified Power Flow Controller and Static Synchronous Series Compensator
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3