This work is an overview of theoretical approaches used for estimating the characteristics of straight or grooved annular seals. The flow in annular seals is dominated by inertia forces. The goal of the static analysis is to describe the relation between the pressure difference across the seal and the (mass) flow rate. The presentation introduces different approaches of the static problem (analytic, simplified–“bulk flow” and CFD) and underlines the main difficulties in analysing annular seals. The forces on an eccentric rotor are described as a superposition between three effects (Lomakin, viscous and Bernoulli forces). This approach is then used to describe the dynamic characteristics of the seal for a rotor whirling around its centred position. The specific aspects that compressibility adds to gas annular seals analysis are next discussed, with its most important consequence, the flow choking in the exit section. Finally, some recent findings concerning the analysis of textured stator annular seals are presented. The results show that the presence of textures engenders stator and rotor friction coefficients obeying different laws. The use of these new friction coefficients in the bulk-flow equations enables to match the values of the experimental dynamic coefficients. A discussion about the further needs (development and research) in annular seals analysis is carried out at the end of this work.

This content is only available via PDF.
You do not currently have access to this content.