Laser-Doppler anemometry (LDA) measurements of the mean velocity and Reynolds stresses are carried out on a rough surface favorable pressure gradient (FPG) turbulent boundary layer. These data is compared with smooth FPG turbulent boundary layer data possessing with the same strength of pressure gradient and also with rough zero pressure gradient (ZPG) data. The scales for the mean velocity deficit and Reynolds stresses are obtained through means of equilibrium similarity analysis of the RANS equations [1]. The mean velocity deficit profiles collapse, but to different curves when normalized using the free-stream velocity. The effects of the pressure gradient and roughness are clearly distinguished and separated. However, these effects are removed from the outer flow when the profiles are normalized using the Zagarola and Smits [2] scaling. It is also found that there is a clear effect of the roughness and pressure gradient on the Reynolds stresses. The Reynolds stress profiles augment due to the rough surface. Furthermore, the strength of the pressure gradient imposed of the flow changes the shape of the Reynolds stress profiles especially on the < v2 > and < uv > components. The rough surface influence is mostly noticed on the < u2 > component of the Reynolds stress, where the shape of the profiles change entirely. The boundary layer parameter δ*/δ shows the effects of the roughness and a dependence on the Reynolds number for the smooth FPG case. The pressure parameter, A, describes a development of the turbulent boundary layer and no influence of the roughness is linked with the parameter, k+. The boundary layers grow differently and depict the influence of the studied effects in their development. These measurements are the first of their nature due to the extensive number in downstream locations (12) and the combination of the studied external conditions (i.e., the strength of the pressure gradient and the surface roughness).

This content is only available via PDF.
You do not currently have access to this content.