Sand erosion is a phenomenon where solid particles impinging to a wall cause serious mechanical damages to the wall surface. This phenomenon is a typical gas-particle two-phase turbulent flow and a multi-physics problem where the flow field, particle trajectory and wall deformation interact with among others. On the other hand, aircraft engines operating in a particulate environment are subjected to the performance and lifetime deterioration due to sand erosion. Especially, the compressor of the aircraft engines is severely damaged. The flow fields of the compressor have strongly three dimensional and unsteady characters. In order to estimate the deterioration due to sand erosion, the sand erosion simulation for the compressor is required under the consideration of the rotor-stator interaction. In the present study, we apply our three dimensional sand erosion prediction code to a single stage axial flow compressor. We numerically investigate the change of the flow field, the particle trajectories, and the eroded wall shape in the compressor, to clarify the effects of sand erosion.

This content is only available via PDF.
You do not currently have access to this content.