Flow through the vertical axis cross-flow wind turbine was analyzed using computational fluid dynamics (CFD) to clarify current aerodynamic issues and to propose an improved design configuration for achieving better performance. The computed torque coefficients and power coefficients of a reference cross-flow wind turbine runner were compared with the experimental results. Flow around each blade of the turbine runner was then investigated based on the computed flow results. As a countermeasure to the issues found, a new wind turbine design was devised which has two guide vanes point-symmetrically arranged outside the turbine runner. It was experimentally shown that this improved design with the guide vanes increased turbine efficiency. However, performance predictions by CFD lack sufficient accuracy in the case of the turbine runner with the guide vanes, where complexity and unsteadiness prevail over the entire flow fields.

This content is only available via PDF.
You do not currently have access to this content.