A Liquid-Liquid Cylindrical Cyclone separator (LLCC) is a device used in the petroleum industry to separate the oil-water mixture obtained from the well. The use of this device has not been widespread due to the lack of tools for predicting its separation capability. This paper presents a numerical and experimental study of the fluid dynamic performance of this type of cylindrical cyclone separators. The use of numerical simulations would reduce the time and cost necessary to obtain information for predicting the behavior of the equipment. The objective of this study is to determine if CFD (Computational Fluid Dynamics) techniques are able to reproduce the behavior of a LLCC separator. The CFD software examined was ANSYS-CFX 5.6™ and numerical simulations were carried out using the dispersed model with oil as the dispersed phase. The oil and water mixture entering the separator is divided due to centrifugal and buoyancy forces in an upper (oil rich) exit and a bottom (water rich) exit. The separation capability is determined as the maximum amount of water removed from the mixture with the minimum amount of oil content in the water rich exit. The experiments were conducted in a transparent LLCC separator that allows the visualization of the mixture and the measurement of the oil content. Experiments were conducted for three variables: mixture velocity and water content at the entrance, and the split ratio. The split ratio is defined as the bottom exit flow rate divided by the water flow rate at the entrance. The results showed that CFD tools are able to reproduce the oil content obtained from the experiments for all analyzed conditions. Additionally, the mixture distribution images from numerical and experimental data showed good agreement. This study confirms the capacity of CFD tools for the multiphase flow analysis of LLCC separators.

This content is only available via PDF.
You do not currently have access to this content.