In order to predict pressure transients accompanying cavitation and gas bubbles in hydraulic pipeline operating at low pressure, a mathematical model and a simulation method are studied. The mathematical model is based on the two basic equations of motion and continuity. The growing and collapsing of cavitation and gas bubbles accompanying pressure pulsations are modelled to calculate the volumes of cavitation and gas bubbles. The pipeline dynamic friction model is introduced. Meanwhile, a simulation method, using finite difference method and Matlab/Simulink platform, is developed to handle the prediction of pressure transients. Finally an example of fluid transients inside hydraulic pipeline is simulated after a downstream valve is closed rapidly. Simulation results show that, for a certain example pipeline, the mathematical model can handle the prediction of pressure transients accompanying cavitation and gas bubbles in low pressure pipeline. The use of combining finite difference method with Matlab/Simulink platform provides a relatively simple and effective tool to understand the nature of pressure transients accompanying cavitation and gas bubbles.

This content is only available via PDF.
You do not currently have access to this content.