In space propulsion, compressible reactive dispersed two-phase flows are investigated in order to predict the behavior of solid or liquid rocket motors. In the frame of full Eulerian approach, physical modeling of aerodynamic flows in such motors is performed resolving unsteady compressible Navier-Stokes equations for both phases. However, numerical simulations performed on a simple axisymmetric motor have pointed out a flaw of this basic Eulerian approach. Indeed, the variance of the particle velocity distribution is not accounted for, leading to unrealistic accumulations of particles in some specific flow region. To correct this shortcoming, we have developed an advanced Eulerian model based on a statistical approach in the framework of the Mesoscopic Eulerian Formalism (MEF).

This content is only available via PDF.
You do not currently have access to this content.