Traditional gas-solid turbulence models using constant or the single-phase gas turbulent Prandtl number cause error in the thermal eddy diffusivity and thermal turbulent intensity fields calculation. The thermo-mechanical turbulence model is based on solving the hydrodynamic transport equations of the turbulent kinetic energy and turbulent time scale, beside the thermal turbulent equations of temperature variance and thermal turbulence time scale. This model has the ability to calculate the turbulent Prandtl number directly by computing the eddy viscosity and the thermal eddy diffusivity through the values of turbulence fluctuation velocity and thermal variances and time scales. A four way Eulerian/Lagrangian formulation was used to study the effect of particle properties on the turbulent flow and thermal fields, as well as on turbulent Prandtl number in a gas-solid developing pipe flow. Inter-particle collisions were included and the Lagrangian trajectory analysis was used. The earlier results showed that turbulent Prandtl number is influenced by the variations of gas and particle properties and also inter-particle collisions in a fully-developed riser. In the current study, the developing gas-solid flow region in a pipe was considered and the variation of turbulent flow field due to inter-particle collision was evaluated.

This content is only available via PDF.
You do not currently have access to this content.