An experimental investigation was performed on the swirling flow of viscoelastic fluid with deformed free surface in a cylindrical container driven by the constantly rotating bottom wall. The tested fluid was an aqueous solution of CTAC (cetyltrimethyl ammonium chloride), which is a cationic surfactant. Water, 40ppm, 60ppm and 200ppm CTAC solution flows were tested at Froude numbers ranging from 2.59 to 16.3. PIV was used to measure the secondary velocity field in the meridional plane and the deformed free-surface level was extracted from the PIV images. At a similar Froude number, the depth of the dip formed at the center region of the free surface was decreased for CTAC solution flow compared with water flow. The inertia-driven vortex at the up-right corner in the meridional plane becomes more and more weakened with increase of the solution concentration or viscoelasticity. Through analyzing the overall force balance compared with water flow, the first normal stress difference or the weak viscoelasticity was estimated for the dilute CTAC solution flows.

This content is only available via PDF.
You do not currently have access to this content.