A method of coupling a low-Reynolds-number k–ε RANS (Reynolds-Averaged Navier-Stokes) model with Large-Eddy Simulation (LES) in a two-layer Hybrid LES/RANS (HLR) scheme is proposed in the present work. The RANS model covers the near-wall region and the LES model the remainder of the flow domain. Two different subgrid-scale (SGS) models in LES were considered, the Smagorinsky model and the one-equation model for the residual kinetic energy (Yoshizawa and Horiuti, 1985), combined with two versions of the RANS ε equation, one governing the “isotropic” (ε˜; Chien, 1982) and the other the “homogeneous” dissipation rate (εh; Jakirlic and Hanjalic, 2002). Both fixed and self-adjusting interface locations were considered. The exchange of the variables across the interface was adjusted by smoothing the turbulence viscosity either by adjusting the RANS model parameters, such as Cμ (Temmerman et al., 2005), or by applying an additional forcing at the interface using a method of digital-filter-based generation of inflow data for spatially developing DNS and LES due to Klein et al. (2003). The feasibility of the method was illustrated against the available DNS, fine- and coarse grid LES, DES (Detached Eddy Simulation) and experiments in turbulent flow over a backward-facing step at a low (Yoshioka et al., 2001) and a high Re number (Vogel and Eaton, 1985), periodic flow over a series of 2-D hills (Fro¨hlich et al., 2005) and in a high-Re flow over a 2-D, wall-mounted hump (Greenblat et al, 2004). Prior to these computations, the method was validated in a fully-developed channel flow at a moderate Reynolds number Rem ≈ 24000 (Abe et al., 2004).

This content is only available via PDF.
You do not currently have access to this content.